Hannover’11: Festo’s gull not a red herring!

What do the herring gull and the elephant’s trunk have to do with automation technology? Festo is provides the answer at the 2011 Hannover Trade Fair, where it is presenting future concepts that are inspired by nature and are put into practice in the Bionic Learning Network. With SmartBird, engineers from Festo have succeeded in deciphering the flight of birds, thus accomplishing a further breakthrough in automation technology. Just as with the Bionic Handling Assistant – which in 2010 received the German Future Prize, a major international design award – Festo is focusing this year on energy efficiency and lightweight construction.

With the Bionic Learning Network and 66 new products on show, Festo is setting the pace at the Hannover Trade Fair in numerous fields, from safe automation and intelligent mechatronics solutions up to new drive and handling technologies, energy efficiency and lightweight construction techniques.

The highlight for visitors will undoubtedly be to see the fascinating SmartBird in flight. One of the oldest dreams of mankind is to fly like a bird – to move freely through the air in all dimensions and to take a ‘bird’s-eye view’ of the world from a distance. No less fascinating is bird flight itself. Birds achieve lift and remain airborne using only the muscle power of their wings, with which they generate the necessary thrust to overcome the air resistance and set their bodies in motion – without any rotating ‘components’. Nature has ingeniously achieved the functional integration of lift and propulsion. Birds measure, control and regulate their motion through the air continuously and fully autonomously in order merely to survive. For this purpose they use their sensory organs.

Suzanne Gill of Control Engineering Europe gives her impressions in her article Technology copies nature! (24/5/2011)

The flight of birds was long shrouded in mystery. Many scientists failed in their attempts to understand how birds fly, and the secret remained unsolved. The research team from the family-owned enterprise Festo has now, in 2011, succeeded in unravelling the mystery. The key to its understanding is a unique movement that distinguishes SmartBird from all previous mechanical flapping wing constructions and allows the ultra-lightweight, powerful flight model to take off, fly and land autonomously.

SmartBird flies, glides and sails through the air just like its real-life counterpart – the herring gull – with no additional drive mechanism. Its wings not only beat up and down, but also twist at specific angles. This is made possible by an active articulated torsional drive unit, which in combination with a complex control system makes for unprecedented efficiency in flight operation. Festo has thus succeeded for the first time in attaining an energy-efficient technical adaptation of this model from nature.

In developing the model, the engineers were able to draw on their wealth of experience and innovations. The experience gained with the Bionic Learning projects AirRay and AirPenguin was incorporated into the creation of SmartBird. The fascination of building an artificial bird that could take off, fly and land by means of flapping wings alone provided the inspiration for the development team: as a global player in pneumatics, Festo’s mastery of airflow is unparalleled. In the development and production of the latest generations of cylinders and valves, the objective is to make optimal, efficient use of airflow for automation technology.

An unusual feature of SmartBird is the active torsion of its wings and the fact that it dispenses with the use of additional lift devices. The aim of the SmartBird project was to achieve an overall structure that is efficient in terms of resource and energy consumption, with minimal overall weight, in conjunction with functional integration of propulsion and lift in the wings and a flight control unit in the torso and tail regions. Further requirements were excellent aerodynamics, high power density for propulsion, and maximum agility for the flying craft. The outcome is an intelligent biomechatronic overall system.

In practice, this system operates above all in an energy-efficient manner: the propulsion and lift, as intended, are achieved solely by the flapping of the wings and have a power requirement of only around 23 watts. SmartBird has a total weight of around 450 grams and a wingspan of two metres. Measurements have demonstrated an electromechanical efficiency factor of around 45% and an aerodynamic efficiency factor of up to 80%. SmartBird is thus an excellent example of functional integration and resource-efficient extreme lightweight design, and demonstrates optimal use of airflow phenomena. It will provide important design insights for the further optimisation of future generations of cylinders and valves.

The onboard electronics ensure precise wing control. In addition, the torsion control parameters can be adjusted and thus optimised in real time during flight. The wing flapping and twisting sequence is controlled to within only a few milliseconds and results in optimum airflow around the wings. The SmartBird flight model has no rotating parts on its exterior and therefore cannot cause injury. It is further pursuing an approach that already played an important role in the development of the Bionic Handling Assistant: human-machine interaction. This feature of both the Bionic Handling Assistant and SmartBird poses no risk to the human operator. SmartBird thus joins the list of Festo’s future-oriented technologies that are expected to find practical application. Possible uses range from stroke wing generators in the energy sector up to actuators for process automation.

See bird in flight!

About Eoin Ó Riain

Sé Read-out iris uaithoibríoch, ionstraim agus stiúradh na hÉireann agus an "Signpost" a áit ar an idirlín! Read-out is Ireland's journal of automation, instrumentation and control and the Instrumentation Signpost is it's web presence.
This entry was posted in Uncategorized and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s